Chem. Ber. 100, 3538-3550 (1967)

Jean F. M. Oth*, Robert Merényi*, Herbert Röttele** und Gerhard Schröder **

NMR-Spektroskopisches Verhalten einiger anellierter Bullvalene¹⁾

Aus den Union Carbide European Research Associates, Brüssel* und dem Institut für Organische Chemie der Technischen Hochschule Karlsruhe**

(Eingegangen am 2. Mai 1967)

Die mit Fünf- bzw. Sechsringsystemen anellierten Bullvalene 4, 5 und 6 (Addukte aus Dienen und 3.4-Dehydro-bullvalen) zeigen, wie bisher alle Moleküle mit dem Bullvalen-Skelett, temperaturabhängige NMR-Spektren. — In 4, 5 und 6 tauschen jedoch nicht alle 10 Bullvalenyl-Kohlenstoffatome ihre Plätze und Nachbarn aus. Die zwei substituierten C-Atome bleiben immer aneinander gebunden. Daher sind hier prinzipiell nur vier Stellungsisomere möglich. — Durch die bei Raumtemperatur im Bullvalen-Skelett leicht ablaufenden Valenzisomerisierungen gehen die Moleküle in die energieärmsten Strukturen über. Im Falle von 4 und 5 zeigen die NMR-Spektren, daß maximal nur zwei Stellungsisomere — nämlich die Isomeren 4b (BO_b^*) sowie 5b (BO_b^*) und 5c (CC) — das Gleichgewichtsgemisch beherrschen. — 6 ist ein Benzobullvalen. Durch Einbau in einen Benzolkern wird eine Doppelbindung des Bullvalen-Skeletts für die Valenzisomerisierung blockiert, so daß 6 sich nur wie ein überbrücktes Homotropiliden isomerisiert.

In der vorstehenden Mitteilung¹⁾ wurde die Reaktion von Brombullvalen (1) in Gegenwart von Kalium-tert.-butylat mit reaktiven Dienen zu den anellierten Bullvalenen 4, 5 und 6 beschrieben. Die Bildung dieser Verbindungen wurde als überzeugender Hinweis für das intermediäre Auftreten von 3.4-Dehydro-bullvalen (2) gewertet.

XIV. Mitteil. über Moleküle mit schneller und reversibler Valenzisomerisierung; XIII. Mitteil.: G. Schröder, H. Röttele, R. Merényi und J. F. M. Oth, Chem. Ber. 100, 3527 (1967), vorstehend.

Die Strukturbeweise für die anellierten Bullvalene 4, 5 und 6 gründeten sich besonders auf die NMR-Spektren. Wie bei allen Molekülen mit dem Bullvalen-Skelett sind diese temperaturabhängig und sehr informativ^{2,3)}. Sie vermitteln einen Einblick in die schnellen Valenzisomerisierungen und werden in dieser Mitteilung ausführlich diskutiert.

Allgemeine Betrachtungen über die Valenzisomerie bei den anellierten Bullvalenen

Die anellierten Bullvalene sind in ihrer Valenzisomerie wie die disubstituierten Bullvalene³⁾ zu behandeln. Man muß 12 Stellungsisomere – wobei 3 Isomere immer als optische Paare auftreten – und 27 Isomerisierungsgeschwindigkeiten unterscheiden⁴⁾ (s. Abbild. 1).

Abbild. 1. Stellungsisomere und Isomerisierungsgeschwindigkeiten bei den anellierten Bullvalenen

Es ist leicht einzusehen, daß man durch entsprechende strukturelle Abwandlungen des am Bullvalen-Skelett ankondensierten Ringes die Anzahl der Isomeren nochmals erhöhen kann. Das sei an folgenden Beispielen kurz erläutert:

a) Halbiert der Substituent oder die Gruppe X das nichtplanare Ringsegment, so sind für die Positionsisomeren BC^* , BO_b^* , BO_c^* , $O_bO_c^*$, CO_b^* und CO_c^* optische Paare

R. Merényi, J. F. M. Oth und G. Schröder, Chem. Ber. 97, 3150 (1964); J. F. M. Oth, R. Merényi, J. Nielsen und G. Schröder, ebenda 98, 3385 (1965).

³⁾ J. F. M. Oth, R. Merényi, G. Engel und G. Schröder, Tetrahedron Letters [London] **1966**, 3377.

⁴⁾ Bedeutung der Symbole: C, O_c , O_b und B entsprechend der Cyclopropyl- (C), der Olefin-(O_c und O_b) und der Brückenkopfposition (B) des Substituenten. Der Stern* kennzeichnet solche Strukturen, bei denen die beiden Substituenten an ein und demselben Arm des Bullvalen-Skeletts stehen (unter einem solchen Arm verstehen wir die Kette aus Brückenkopf-, Olefin-, Olefin- und Cyclopropan-Kohlenstoffatom).

(s. z. B. 7), für alle anderen Stellungsisomeren *endo-* und *exo-*Isomere zu erwarten (mit zusätzlicher optischer Isomerie bei CO_c , O_bO_c und CO_b). Die *endo-* und *exo-*Isomeren sind durch die relative Lage von X zum Cyclopropanring festgelegt (s. z. B. 8 und 9).

b) Der Substituent oder die Gruppe X ist so an einem planaren Ringsegment angeordnet, daß dieses dadurch nicht halbiert wird. Im Falle von $O_bO_c^{\bullet}$ liegen jetzt zwei Isomere 10 vor. Dasselbe gilt für jedes mit • gekennzeichnete Positionsisomere

wie auch für die Isomeren CO_c , O_bO_c und CO_b , bei denen aber zusätzlich optische Isomerie ins Spiel kommt. Die Isomeren CC, O_bO_b und O_cO_c erscheinen nur als Antipodenpaare.

Selbstverständlich sind gewisse der zahlreichen Isomeren aus verschiedenen Gründen bevorzugt. Es ist z. B. zu erwarten, daß bei Bullvalen-Derivaten mit kleinem äußeren Ring nur die Isomeren $O_bO_c^*$, CO_c^* , BO_b^* und CC möglich sind (in Abbild. 1 umrandet), zutreffend z. B. für die Verbindungen 4 und 5.

Es ist nicht uninteressant zu spekulieren, wie sich ein System mit großer Ringgliederzahl (n = 10 oder größer) verhalten würde. Hier sollten alle 12 Stellungsisomeren möglich sein, und das Bullvalen-Skelett windet sich dabei durch den großen Ring hindurch.

Diskussion der NMR-Spektren der anellierten Bullvalene 4, 5 und 6

1) Furan-Addukt 4 ($C_{14}H_{12}O$)

Die temperaturabhängigen NMR-Spektren des Adduktes 4 sind in Abbild. 2 wiedergegeben.

Im Tieftemperaturspektrum (-40°) erscheinen 3 aliphatische und 5 olefinische Bullvalenylprotonen: Die ersteren zentriert um $\tau = 7.80$, die 5 olefinischen Protonen als verschiedene Signale zwischen $\tau = 3.7$ und $\tau = 4.8$. Die bullvalenylfremden olefinischen Protonen a und a' begegnen uns als AB-Quartett bei $\tau_a = 3.27$ und $\tau_{a'} = 3.58$ ($J_{aa'} = 5.8$ Hz) (jedes dieser Signale ist durch Kopplung mit den Protonen b bzw. b' in ein Dublett aufgespalten: $J_{ab} = 1.5$ Hz); die Brückenkopfprotonen b und b' erscheinen als ein Pseudotriplett bei $\tau = 5.05$.

Abbild. 2. NMR-Spektren des Furan-Adduktes 4 bei verschiedenen Temperaturen

Das Verhältnis von 3 aliphatischen zu 5 olefinischen Bullvalenylprotonen sowie der Habitus der Resonanzsignale für die Protonen a, a' und b, b' informieren unmißverständlich darüber, daß das Gleichgewichtsgemisch von 4 nur von den Isomeren BO_b^* und/oder CO_c^* beherrscht werden kann. Das CO_c^* -Isomere kann jedoch wie schon jetzt angedeutet sei — verworfen werden, da damit weder die Veränderungen im NMR-Spektrum bei Temperaturerhöhung noch das Hochtemperaturspektrum erklärt werden können. BO_b^* ist das beherrschende Isomere beim Furan-Addukt 4. Im Tieftemperaturspektrum von 4 sind die Resonanzsignale der Bullvalenylprotonen folgendermaßen zuzuordnen: das Dublett zentriert um $\tau = 4.65$ repräsentiert Proton 10⁵ ($J_{9,10} = 11$ Hz), die Protonen 3, 6, 7 und 9 erscheinen in der Signalgruppe zentriert bei $\tau = 4.1$, während die aliphatischen Bullvalenylprotonen 1, 2 und 8 im Signal bei $\tau = 7.80$ auftreten.

Die temperaturabhängigen NMR-Spektren des Furan-Addukts 4 sowie der Habitus des Hochtemperaturspektrums können am besten durch die Valenzisomerisierungen $\mathbf{BO}_{b}^{*} \rightarrow \mathbf{CC} \rightarrow \mathbf{BO}_{b}^{*}$ erklärt werden (die beiden \mathbf{BO}_{b}^{*} -Isomeren verhalten sich wie Bild und Spiegelbild), sofern das prozentuale Gewicht von CC als klein angenommen wird. Diese Erklärung macht es verständlich, warum das Resonanzsignal der aund a'-Protonen bei tiefen Temperaturen ein AB-System repräsentiert und warum bei höheren Temperaturen die a- und a'-Protonen für die NMR-Spektroskopie gleichwertig werden und in *ein* Resonanzsignal ($\tau = 3.58$) zusammenfließen. Für die

 $BO_b^*(d \text{ oder } l)$ 4b CC 4c

BO^{*}_b (d oder l) 4b

Temperaturabhängigkeit der Resonanzsignale der b- und b'-Protonen gelten analoge Überlegungen. Die Form der Signale (bei +80°) der a-, a'-, b- und b'-Protonen entspricht dem berechneten Spektrum eines A₂B₂-Systems mit $J_{AX} = J_{ab} = 1.5$ Hz, $J_{AA} = J_{aa'} = 5.8$ Hz und $J_{AX'} = J_{ab'} = J_{XX'} = J_{bb'} = 0$ Hz. Wegen eines temperaturabhängigen Lösungsmitteleffektes beobachtet man eine Verschiebung aller Signale bei +80° um etwa +0.15 ppm im Vergleich zu den Werten bei -40°. So findet man statt der berechneten Durchschnittswerte $\tau_{ber.} = 3.42$ (a-Protonen) und $\tau_{ber.} = 5.05$ (b-Protonen) die Werte $\tau = 3.58$ und $\tau = 5.25$.

Das Auftreten einer Bande zentriert um $\tau = 6.1$ mit der relativen Intensität 2 im Spektrum bei +80 und +100° kann ebenfalls aufgrund der gleichen Valenzisomerisierung verstanden werden: Dieser τ -Wert entspricht ungefähr dem Durchschnittswert der chemischen Verschiebungen der Protonen 2 und 9: $\tau_{ber.} = 5.95$. Es ist ferner leicht einzusehen, daß die Protonen 3 und 10 gemeinsam ein Dublett zentriert bei $\tau = 4.52$ ($J_{2,3} = J_{9,10} = 9$ Hz) mit der relativen Intensität 2 ausbilden. Auch hier läßt sich der Durchschnittswert wieder berechnen: $\tau_{ber.} = 1/2$ (4.1 + 4.65) = 4.37.

Die Signale der Protonen 7 ($\tau = 4.12$), 6 ($\tau = 4.35$) sowie 1 und 8 ($\tau = 7.65$) sollten temperaturunabhängig sein. Die kleinen Änderungen ihrer chemischen Verschiebungen können mit dem Lösungsmitteleffekt erklärt werden.

Der Anteil des CC-Isomeren am Gleichgewicht ist sicherlich sehr klein (kleiner als 5%), andernfalls sollte man eine deutliche Verschiebung der Signale der Protonen 6 und 8 im Hochtemperaturspektrum beobachten. Die geringe Konzentration des CC-Isomeren wird auch noch durch das Fehlen einer scharfen Bande für die a- und a'- sowie b- und b'-Protonen (a und a' sowie b und b' sind in CC identisch) im Tieftemperaturspektrum unterstrichen.

⁵⁾ Numerierung von 4b (linke Formel).

Das CC-Isomere kann übrigens prinzipiell in zwei Konfigurationen auftreten: Entweder steht das O-Atom oder aber die Doppelbindung des substituierten Dihydrofuran-Systems über dem Cyclopropanring des Bullvalen-Skeletts: Diese beiden CC-Isomeren nennen wir CC_{endo} und CC_{exo}, entsprechend der Position des O-Atoms relativ zum Cyclopropan-Ring. Werden beide CC-Konfigurationen durchlaufen, so erhalten wir 6 BO_b⁻-Valenzisomere (sie unterscheiden sich nur in der Numerierung der C-Atome) sowie 3 CC_{endo}⁻ und 3 CC_{exo}-Valenzisomere (s. Abbild. 3).

Die Temperaturabhängigkeit des NMR-Spektrums des Furan-Adduktes 4 wird von uns durch einen Wechsel zwischen zwei BO_b^* -Strukturen via *ein* CC-Isomeres erklärt. Wenn das Molekül die 6 verschiedenen BO_b^* -Strukturen (via die anderen

CC

Abbild. 3. Valenzisomerie des Furan-Addukts 4 unter Berücksichtigung der CC_{endo}- und CC_{exo}-Isomeren

CC-Isomeren) durchlaufen würde, so sollte man – wie Abbild. 3 lehrt – eine zusätzliche Mischung der Bullvalenylprotonen 3, 6 und 10 bzw. 2, 7 und 9 beobachten. Für jede der beiden Gruppen sollte man im Hochtemperaturspektrum nur jeweils eine gemittelte chemische Verschiebung erwarten dürfen. Es ist überraschend, daß das NMR-Spektrum selbst bei +140° dafür keinerlei Anhaltspunkte liefert. Nur eine kleine Änderung in der Auflösung der Signale der Protonen 6 und 7 kann beobachtet werden (vgl. die Spektren bei +80 und +100°). Valenzisomerisierungen unter Einbeziehung der Isomeren CO_e^{c} und $O_bO_e^{c}$ sind auszuschließen. Würden diese Isomeren durchlaufen, so sollte eine wesentlich stärkere Mischung der Signale der Bullvalenylprotonen stattfinden.

2) 1.3-Diphenyl-isobenzofuran-Addukt 5 (C₃₀H₂₂O)

Abbild. 4 gibt die temperaturabhängigen NMR-Spektren von 5 wieder.

Im Tieftemperaturspektrum (-48°) erscheinen die 8 Bullvalenylprotonen als 3 Signalgruppen. Die erste zwischen $\tau = 3.7$ und 4.5 entsteht durch Überlagerung einer breiteren und einer schärferen Bande; die zweite ist zentriert um $\tau = 6.07$ und

Abbild. 4. NMR-Spektren des 1.3-Diphenyl-isobenzofuran-Adduktes 5 bei verschiedenen Temperaturen

die dritte um $\tau = 7.85$. Die relativen Intensitäten dieser drei Signalgruppen verhalten sich wie 5.4:0.4:2.2. Die 14 aromatischen Protonen von 5 absorbieren zwischen $\tau = 2.0$ und 3.0. Die Flächenverteilung der Resonanzsignale der Bullvalenylprotonen im Spektrum bei -48° kann nur mit einem Gleichgewichtsgemisch verschiedener Isomeren erklärt werden. Der Übersichtlichkeit halber sei hier das Ergebnis unserer Deutung vorweggenommen und die NMR-spektroskopischen Befunde daran erläutert. Das Addukt 5 ist in Lösung durch ein Gemisch zweier BO_b^{*}-Isomeren (5b) und *eines* CC-Isomeren (5c) zu beschreiben, wobei der Anteil von BO_b^{*} ca. 54% und der von CC ca. 46% beträgt.

Das NMR-Spektrum bei -48° entsteht also durch eine additive Überlagerung des **BO**^{*}_b- und **CC**-Spektrums. Die einzelnen Protonenresonanzsignale werden wie folgt zugeordnet: Die Protonen 3, 6, 7, 9 und 10 von **BO**^{*}_b (Numerierung der linken Formel in Abbild. 4) und die Protonen 2, 3, 7, 8, 9 und 10 des **CC**-Isomeren erscheinen in dem Signal zwischen $\tau = 3.7$ und 4.5. Die kleine Bande bei $\tau = 6.07$ wird von uns dem Cyclopropylproton 6 des **CC**-Isomeren zugeschrieben (aus der relativen Intensität dieser Bande kann u. a. die Gleichgewichtskonzentration des **CC**-Isomeren hergeleitet werden). Das Signal bei $\tau = 7.85$ kommt den Protonen 1, 2 und 8 im **BO**^{*}_b-Isomeren (Numerierung gilt für die linke Formel in Abbild. 4) sowie dem Proton 1 im **CC**-Isomeren zu. Die Protonen der Phenylgruppen begegnen uns in den beiden Signalen bei $\tau = 2.3$ und $\tau = 2.5$, während die 4 Protonen der Benzogruppe als Multiplett zentriert bei $\tau = 2.75$ erscheinen.

Temperaturanstieg führt zu wesentlichen Veränderungen im NMR-Spektrum von 5, die durch die Valenzisomerisierungen $BO_b^* \rightleftharpoons CC \rightleftharpoons BO_b^*$ zu erklären sind. Wie das Spektrum bei -10° lehrt, verbreitern sich die Resonanzsignale der Bullvalenylprotonen und das Signal bei $\tau = 6.07$ des Tieftemperaturspektrums (Proton 6 in CC) verschwindet.

Die Resonanzbanden bei $+80^{\circ}$ sind folgendermaßen zu deuten: Nur Proton 1 besitzt in beiden BO_b° -Isomeren und im CC-Isomeren aliphatischen Charakter. Es ist in jedem Fall (über C-C-Einfachbindungen) mit den Protonen 2, 8 und 9 gekoppelt. Unter den bei $+80^{\circ}$ gegebenen Bedingungen eines schnellen Austausches erhalten wir für Proton 1 ein Quartett zentriert um $\tau = 7.78$ (das ist praktisch die gleiche chemische Verschiebung wie im Tieftemperaturspektrum). Die Kopplungskonstante J = 8.2 Hz entspricht dem Durchschnittswert der Kopplungskonstanten $J_{1,2}, J_{1,8}$ und $J_{1,9}$.

Die Protonen 3, 7 und 10 bleiben stets olefinisch. Das Proton 7 ist mit den Protonen 6 und 8 gekoppelt: Die gemittelten Kopplungskonstanten $J_{7.8} = 9.5$ und $J_{6.7} = 10$ Hz

unterscheiden sich geringfügig voneinander, so daß 7 als ein Pseudotriplett bei $\tau = 4.12$ erscheint. Die olefinischen Protonen 3 und 10, die ihre chemische Verschiebung beibehalten, erscheinen als Dublett zentriert um $\tau = 4.31$ ($J_{2.3} = J_{9.10} = 10.5$ Hz). Proton 6 zeigt olefinischen Charakter in BO_b[•] und Cyclopropyl-Charakter in CC. Es erscheint somit bei $+80^{\circ}$ als Dublett bei $\tau = 5.12$ ($J_{6.7} = 10$ Hz). Proton 8 ist in BO_b[•] ein Cyclopropylproton, das mit den Protonen 1, 2 und 7 (linke Formel) koppelt. In CC ist es von olefinischer Natur. Jetzt koppelt es mit den Protonen 1 und 7. Es zeigt sich in dem breiten Resonanzsignal bei $\tau = 6.3$. Die Protonen 2 und 9 sind beide olefinisch in CC und entweder olefinisch oder cyclopropylisch in BO_b[•]. Die gemittelten Kopplungskonstanten sind hier komplizierter und daher weniger übersichtlich. Diese beiden Protonen erscheinen bei $\tau = 5.5$. Die verschiedenen gemittelten chemischen Verschiebungen stimmen mit den auf der Basis der angenommenen Gleichgewichtskonzentrationen berechneten Werten⁶) überein. Für Proton 6: $\tau_{ber.} = 5.01$, für Proton 8: $\tau_{ber.} = 6.12$ und für die Protonen 2 und 9: $\tau_{ber.} = 5.12$.

Der Habitus der Signale der Phenyl- und Benzoprotonen ist, wie erwartet, ebenfalls temperaturabhängig. So erscheinen die 4 Protonen der Benzogruppe bei -10° schon als scharfes Singulett (bei -48° dagegen zeigen sie sich als Multiplett).

Analog dem Furan-Addukt kann das CC-Isomere von 5 wiederum in zwei Konfigurationen auftreten, d. h. in einer endo- und einer exo-Konfiguration. Durch Valenzisomerisierung im Bullvalen-Skelett kann jede Anordnung eingenommen werden (vgl. Abbild. 3). Daß die CC_{exo} -Konfiguration in Wirklichkeit nicht durchlaufen wird, kann folgendermaßen bewiesen werden: Nimmt man beliebige Gleichgewichtskonzentrationen von BO_b^* , CC_{endo} und CC_{exo} an, so kommt man jedenfalls zu einer weitergehenden Mischung der Protonensignale, da alle 12 Isomeren der Abbild. 3 durchlaufen werden. Dabei sollten nämlich die Protonen 3, 6 und 10 sowie die Protonen 2, 7 und 9 bei höheren Temperaturen jeweils untereinander identisch werden. Da das NMR-Spektrum selbst bei +140° keine Anhaltspunkte für diese Mischungen liefert, ist anzunehmen, daß eines der beiden CC-Isomeren (nämlich CC_{exo}) eine relativ größere Energie besitzt. Damit werden die Valenzisomere in 5 auf ein CC-Isomeres (endo) und zwei BO_b-Isomere reduziert. Modellbetrachtungen im Falle von 5 lehren, daß die Konfiguration mit über dem Cyclopropan-Ring stehender Benzogruppe (CC_{exo}) relativ energiereich sein muß. Die sterische Wechselwirkung zwischen dem Cyclopropylproton und einem darüberstehenden Sauerstoffatom (CC_{endo}) ist dagegen vergleichsweise gering. Die bevorzugte Konfiguration ist die energieärmere. Wir nehmen daher an, daß die endo-Konfiguration bevorzugt ist. Die chemische Verschiebung des Protons 6 im CC-Isomeren ($\tau = 6.07$, stark verschoben nach niedrigen Feldern) spricht auch für die *endo*-Konfiguration. Bei CC_{exo} dagegen sollte man für Proton 6 wegen des Ringstrom-Effektes der Benzogruppe eine Verschiebung nach höheren Feldern erwarten.

In Anlehnung an diese Argumentation darf ebenfalls die CC_{endo} -Konfiguration bei Verbindung 4 als wahrscheinlich gelten; jedoch gibt es dafür keine Beweise, da wegen der sehr geringen Konzentration des CC-Isomeren kein Signal für Proton 6 auftritt.

⁶⁾ Die Abweichungen kommen von der Unsicherheit der Tieftemperaturwerte für die olefinischen Verschiebungen und von dem temperaturabhängigen Lösungsmitteleffekt.

3) Tetracyclon-Addukt 6 (C₃₈H₂₈)

Abbild. 5 gibt die temperaturabhängigen NMR-Spektren von 6 wieder.

Den 8 Bullvalenylprotonen in 6 stehen 20 aromatische Protonen gegenüber. Dieses ungünstige Verhältnis zusammen mit der geringen Löslichkeit von 6 in allen gebräuchlichen Lösungsmitteln verhinderte bislang die Aufnahme vorzüglicher NMR-Spektren.

Abbild. 5. NMR-Spektren des Tetracyclon-Adduktes 6 bei verschiedenen Temperaturen

Im Spektrum von -60° erkennen wir zwei scharfe Signale bei $\tau = 2.85$ und 3.20, die den Phenylprotonen zuzuordnen sind. Die 8 Bullvalenylprotonen erkennen wir in den vier Signalen zentriert um $\tau = 4.2$, $\tau = 6.8$, $\tau = 7.2$ und $\tau = 7.85$. Das Verhältnis von 4 olefinischen zu 4 aliphatischen Protonen beweist ein $O_b O_c^{\bullet}$ -Isomeres. Hier begegnet uns also ein Derivat des Benzobullvalens. Die Temperaturabhängigkeit und der Habitus des Spektrums bei $+70^{\circ}$ sind durch eine Valenzisomerisierung zu erklären, bei der nur zwei $O_b O_c^{\bullet}$ -Isomere beteiligt sind.

Chemische Berichte Jahrg. 100

Durch Einbau in einen Benzolkern wird eine Doppelbindung des Bullvalens für die Valenzisomerisierung blockiert. 6 entspricht damit einem durch einen Benzorest überbrückten Homotropiliden. Das Spektrum bei +70° ist in der Tat den Hochtemperaturspektren anderer überbrückter Homotropiliden-Systeme⁷) ganz analog. Wichtig ist hier das Resonanzsignal bei $\tau = 6.10$, das durch Mittelung der chemischen Verschiebungen zweier Cyclopropyl- (2 und 8) und zweier olefinischer Protonen (4 und 6) entsteht. Die Koalescenztemperatur ist etwa -10° . Die Protonen 1 und 5 werden ebenfalls durch die schnelle und reversibel verlaufende Valenzisomerisierung $O_bO_c^* \rightleftharpoons O_bO_c^*$ für die NMR-Spektroskopie identisch. Ihre Signale koalescieren entsprechend der kleinen Differenz ihrer chemischen Verschiebungen schon bei -35° . Sie erscheinen im Spektrum bei $+5^{\circ}$ als Triplett bei $\tau = 6.95$ ($J_{4.5} = J_{5.6} = J_{1.2} =$ $J_{1,8} = 9$ Hz). Die Protonen 3 und 7 behalten während der Valenzisomerisierung ihren olefinischen Charakter bei. Sie geben sich durch das Triplett zentriert um $\tau = 4.1$ zu erkennen ($J_{3,4} = J_{2,3} = 9$ Hz). Das Tieftemperaturspektrum entspricht der Strukturformel von 6. Es bedarf keiner weiteren Erklärung: Die Zuordnung der Protonen ist in Abbild. 5 wiedergegeben.

Aus der Linienbreite des Resonanzsignales der Protonen 2, 4, 5 und 8 im Koalescenzgebiet (Spektren bei -10° und höher) können die kinetischen Parameter für die Valenzisomerisierung im Homotropiliden-System abgeleitet werden. Mit Hilfe der Gutowsky-Holmschen⁷) Gleichung bekommen wir:

$$k (0^{\circ}) = 1450 \text{ sec}^{-1}$$

 $E^* = 12 \pm 2 \text{ kcal/Mol}$

Die Aktivierungsenergie entspricht den für andere überbrückte Homotropiliden-Systeme gefundenen Werten⁸). Die Geschwindigkeitskonstante ist vergleichsweise edoch erheblich kleiner. Sie kommt der des Bullvalens recht nahe⁹).

Diskussion der relativen Größen gewisser Isomerisierungsgeschwindigkeiten

Die Valenzisomerie der anellierten Bullvalene 4 und 5 ist auf die Isomere beschränkt, bei denen die beiden substituierten Kohlenstoffatome stets aneinander gebunden bleiben. Abbild. 6 zeigt die möglichen Positionsisomeren von 4 und 5 unter Berücksichtigung der *endo/exo*-Isomeren (wobei letztere auf eine Unymmetrie des ankondensierten Ringes zurückgehen).

Da nur Isomere mit *ortho*-substituierten Kohlenstoffatomen möglich sind, können wir schreiben:

 $k_8 \cong 0$

Das Studium des Schemas in Abbild. 6 ergibt die folgenden Zusammenhänge zwischen den Konzentrationen der Isomeren und den Isomerisierungsgeschwindigkeiten (nach dem Prinzip von "detailed balance at equilibrium"¹⁰):

⁷⁾ H. S. Gutowsky und C. H. Holm, J. chem. Physics 25, 1228 (1956).

⁸⁾ Vgl. G. Schröder, J. F. M. Oth und R. Merényi, Angew. Chem. 77, 774 (1965); Angew. Chem. internat. Edit. 4, 752 (1965).

⁹⁾ J.-M. Gilles und J. F. M. Oth, Communication n° 389, Abstracts of Papers presented to the 8th European Congress on Molecular Spectroscopy, August 14-20, 1965; Kopenhagen; M. Saunders, Tetrahedron Letters [London] 1963, 1699.

¹⁰⁾ Vgl. z. B. R. C. Tolman, The Principles of Statistical Mechanics, S. 159-165, University Press, Oxford 1955.

Abbild. 6. Mögliche Positionsisomere von 4 und 5 unter Berücksichtigung der endo- und exo-Isomeren

227*

	$2 k_2$	· [O _b O [*] _c]	_	$2 k_3$	· [CO [*]]		
	k_4	· [CO [*]]	=	k_5	· [BO [•]]		
	k_{6exo}	· [BOb]		$2 k_{7 exo}$	· [CCexo]		
	k _{6 endo}	· [BOb]		2 k _{1 ende}	· [CCendo]		
	k _{8 exo}	[CCexo]	_	k _{9 exo}	$\cdot \left[\mathbf{O}_{b} \mathbf{O}_{b exo}\right]$		
	k _{8 endo}	· [CCendo]	_	k _{9 endo}	$\cdot [\mathbf{O_b O_b} endo]$		
oder auch		$[O_b O_c^*]$	-	$2 \mathbf{Q} k_3 k_5$	k _{7 exo} k _{7 endo}		
		[CO [*]]		$2 \mathbf{Q} k_2 k_5$	k _{lero} k _{lendo}		
		[BO [*] _b]	=	$2 \mathbf{Q} k_2 k_4$	$k_{7exo} k_{7endo}$		
		[CCexo]	,500 M	$\mathbf{Q} k_2 k_4$	k _{6 exo} k _{7 endo}		
		[CCendo]	=	$Q k_2 k_4$	k _{6 endo} k _{7 exo}		
	[gesamte Konzentration der Verbindung]						
	$\lim_{n \to \infty} Q \stackrel{\text{\tiny{def}}}{=} \overline{[2 k]}$	c3 k5 k7 exo k	$7_{endo} + .$	+	$+ \dots + \dots]$		

Die Folgerungen aus dem Studium der NMR-Spektren und ihrer Temperaturabhängigkeit erlauben es, für jede Verbindung die Ergebnisse folgendermaßen zusammenzufassen:

1) Furan-Addukt 4

[BO [*] _b]	>>	[CO*]	$k_4 >> k_5$
[BO [*]]	>>	$[O_b O_c^*]$	$k_2 k_4 >> k_3 k_5$
[BOb]	>	[CCendo]	$2 k_{7 endo} > k_{6 endo}$
[BO [*]]	>	[CCexo]	$2 k_{7exo} > k_{6exo}$
[CCendo]	>	[CCexo]	$k_{6endo} k_{7exo} > k_{6exo} k_{7endo}$
$[O_b O_b \text{ und andere Isomere}] \simeq 0$			$k_8 \simeq 0$
			$k_9 >>> k_8$

2) 1.3-Diphenyl-isobenzofuran-Addukt 5

Wie bei 4 außer:

	$[\mathbf{BO}_b^*]$	겗	[CC endo]	$2 k_{7 endo} \simeq k_{6 endo}$		
3)	3) Tetracyclon-Addukt 6					
	[O _b O [*] _c]	>>	[CO [*]]	$k_3 >> k_2$		

 k_1 läßt sich im Falle von 6 quantitativ bestimmen. Leider gelingt es nicht, k_1 mit den anderen, unbekannten Isomerisierungsgeschwindigkeiten (z. B. k_3 oder k_4) zu korrelieren.

Der Badischen Anilin- & Soda-Fabrik AG, der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken G. S. und H. R. für die großzügige Unterstützung der Untersuchungen.

[202/67]